Ground Mounted PV Solar Panel Reinforced Concrete Foundation
Ground Mounted PV Solar Panel Reinforced Concrete Foundation

A ground mounted solar panel system is a system of solar panels that are mounted on the ground rather than on the roof of buildings. Photovoltaic solar panels absorb sunlight as a source of energy to generate electricity. A photovoltaic (PV) module is a packaged, and connected photovoltaic solar cells assembled in an array of various sizes. Photovoltaic modules constitute the photovoltaic array of a photovoltaic system that generates and supplies solar electricity in commercial and residential applications. The most common application of solar energy collection outside agriculture is solar water heating systems. This case study focuses on the design of a ground mounted PV solar panel foundation using the engineering software program spMats. The selected solar panel is known as Top-of-Pole Mount (TPM), where it is designed to install quickly and provide a secure mounting structure for PV modules on a single pole. All the information provided by the solar panel provider are shown in the following figure and design data section and will serve as input for detailed foundation analysis and design. Because of available soil conditions at the site, a spread footing foundation is selected to resist applied gravity and wind loads as shown in the following figure. The supporting pole is welded to a base plate anchored to a 36” circular concrete pier.

![Solar Panel Foundation Layout Plan]

*Figure 1 – Solar Panel Foundation Layout Plan*
Code

Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

Reference

spMats Engineering Software Program Manual v8.50, StucturePoint LLC., 2016

Design Data

**Concrete Pier**

Size = 3.0 ft Diameter

Height = 4.0 ft

**Concrete Footing**

Size = 10.0 ft x 10.0 ft

\( f'_{c} = 4,000 \) psi

\( f_{y} = 60,000 \) psi

Thickness = 24 in.

Clear Cover = 3 in.

**Foundation Loads**

\( P_{DL} = 2.0 \) kips

\( M_{x,wind} = 90 \) kips-ft (Reversible)

\( M_{y,wind} = \) Not provided

**Supporting/Fill Soil**

Type = Sandy soil

Subgrade Modulus = 100 kcf

Allowable Pressure = 2.0 ksf

Unit Weight = 135 pcf
## Contents

1. Foundation Analysis and Design – spMats Software ................................................................. 1  
2. Two-way (Punching) Shear Check - Pier ...................................................................................... 8  
3. Soil Reactions / Pressure ............................................................................................................. 9  
4. Foundation Model Statistics ....................................................................................................... 10  
5. Column and Pile Design - spColumn .......................................................................................... 11  
6. 2D/3D Viewer ............................................................................................................................. 15  
7. Pier Section Optimization ........................................................................................................... 16
1. **Foundation Analysis and Design – spMats Software**

   spMats uses the Finite Element Method for the structural modeling, analysis and design of reinforced concrete slab systems or mat foundations subject to static loading conditions.

   The slab, mat, or footing is idealized as a mesh of rectangular elements interconnected at the corner nodes. The same mesh applies to the underlying soil with the soil stiffness concentrated at the nodes. Slabs of irregular geometry can be idealized to conform to geometry with rectangular boundaries. Even though slab and soil properties can vary between elements, they are assumed uniform within each element. Piles and/or supporting soil are modeled as springs connected to the nodes of the finite element model. Unlike for springs, however, punching shear check is performed around piles.

   For illustration and purposes, the following figures provide a sample of the input modules and results obtained from an spMats model created for the ground mounted PV solar panel reinforced concrete footing in this example.

   ![Figure 2 – Solar Panel Foundation Model 3D View](image)

   **Figure 2 – Solar Panel Foundation Model 3D View**
Figure 3 – Defining Concrete Pier

Figure 4 – Assigning Concrete Pier
Figure 5 – Assigning Loads

Figure 6 – Assigning Slave Nodes
Slaved nodes are assigned to restrain the rotation about the axis where the moment is applied for the nodes under the concrete pier to simulate the stiffness of the pier above the foundation and to prevent any stress concentrations due to applying the axial load and moments as point loads.
In some load cases foundation uplift might occur due to overturning moments. spMats solver provides several soil-structure interaction criteria for the user. As such, the model can be solved to control the amount of allowable uplift and the percentage of the cross-sectional area of the foundation that must remain in contact.
Figure 11 – Moment Contour along Y-Axis

Figure 12 – Moment Contour along X-Axis
The previous figure shows that the minimum reinforcement governs the entire foundation. The minimum reinforcement code values are defined by default, and the user can customize this value to better understand the foundation behavior as follows:
2. Two-way (Punching) Shear Check - Pier

B6 - Punching Shear Around Columns (Ultimate Load Combinations):

Units --> Applied Shear Force Vu (kips), Applied Moments Mux, Muy (k-ft)
Factored Shear Stress vu (psi), Factored Shear Resistance Phi*vc (psi)
Concrete Strength f'c (psi), distances X_Offset, Y_Offset (ft)
Average depth (in), Dimensions Bx, By (ft)
Area (in^2), Jxx, Jyy, Jxy (in^4)

Geometry of Resisting Area

<table>
<thead>
<tr>
<th>Node</th>
<th>Location</th>
<th>Average Depth</th>
<th>Dimensions Bx</th>
<th>By</th>
<th>X_Offset</th>
<th>Y_Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>841 C36*</td>
<td>Inner</td>
<td>20.75</td>
<td>4.73</td>
<td>4.73</td>
<td>0.00</td>
<td>-0.00</td>
</tr>
</tbody>
</table>

Properties of Resisting Area

<table>
<thead>
<tr>
<th>Node</th>
<th>Column Label</th>
<th>Area</th>
<th>Jxx</th>
<th>Jyy</th>
<th>Jxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>841 C36*</td>
<td></td>
<td>3695.62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ultimate Load Combination: U11

Factored Applied Forces:

<table>
<thead>
<tr>
<th>Node</th>
<th>Column Label</th>
<th>Vu</th>
<th>Mux</th>
<th>Gamma_X</th>
<th>Muy</th>
<th>Gamma_Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>841 C36*</td>
<td></td>
<td>-2.40</td>
<td>36.0</td>
<td>0.400</td>
<td>-0.0</td>
<td>0.400</td>
</tr>
</tbody>
</table>

Factored Stress and Capacity:

<table>
<thead>
<tr>
<th>Node</th>
<th>Column Label</th>
<th>vu</th>
<th>f'c</th>
<th>Phi*vc</th>
<th>X_Offset</th>
<th>Y_Offset</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>841 C36*</td>
<td>-8.57</td>
<td>4000.00</td>
<td></td>
<td>189.74</td>
<td>-0.00</td>
<td>-2.36</td>
<td>Safe</td>
</tr>
</tbody>
</table>

B7 - Punching Shear Around Piles (Ultimate Load Combinations):

* No piles assigned

Figure 15 – Two-Way Punching Shear Results around the Column (Pier)
3. Soil Reactions / Pressure

**Figure 16 – Soil Service Reactions**

```
B3 - REACTIONS:

-------------
Units --> Force (kip), Moment (kip-ft)

**Service Load Combination:** S9

Sum of all forces and moments with respect to center of gravity (X, Y) = (0.00, 0.00) ft

<table>
<thead>
<tr>
<th>Sum of Reactions</th>
<th>Fz</th>
<th>Mx</th>
<th>My</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil</td>
<td>32.00</td>
<td>-54.00</td>
<td>-0.000</td>
</tr>
<tr>
<td>Springs</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Files</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Restraints</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Slaved Nodes</td>
<td>0.000</td>
<td>-0.000</td>
<td>0.000</td>
</tr>
<tr>
<td><strong>Total Reactions</strong></td>
<td>32.00</td>
<td>-54.00</td>
<td>-0.000</td>
</tr>
<tr>
<td><strong>Total Loads</strong></td>
<td>-32.00</td>
<td>54.000</td>
<td>-0.000</td>
</tr>
</tbody>
</table>
```

**Figure 17 – Soil Pressure**

```
B4 - SOIL DISPLACEMENTS AND PRESSURES:

-------------
Units --> Displacement (in), Pressure (ksf)
Flags --> [X] Indicates allowable pressure is exceeded.

**Service Load Combination:** S9

<table>
<thead>
<tr>
<th>Elem</th>
<th>Node</th>
<th>Disp, Dz</th>
<th>Pressure, Qz</th>
<th>Node</th>
<th>Disp, Dz</th>
<th>Pressure, Qz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43</td>
<td>-0.0751</td>
<td>-0.626</td>
<td>2</td>
<td>-0.0770</td>
<td>-0.642</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>-0.0751</td>
<td>-0.626</td>
<td>3</td>
<td>-0.0771</td>
<td>-0.642</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>-0.0751</td>
<td>-0.626</td>
<td>4</td>
<td>-0.0771</td>
<td>-0.642</td>
</tr>
<tr>
<td>4</td>
<td>46</td>
<td>-0.0751</td>
<td>-0.626</td>
<td>5</td>
<td>-0.0771</td>
<td>-0.642</td>
</tr>
<tr>
<td>5</td>
<td>47</td>
<td>-0.0751</td>
<td>-0.626</td>
<td>6</td>
<td>-0.0771</td>
<td>-0.642</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
<td>-0.0752</td>
<td>-0.626</td>
<td>7</td>
<td>-0.0771</td>
<td>-0.643</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>-0.0752</td>
<td>-0.627</td>
<td>8</td>
<td>-0.0771</td>
<td>-0.643</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>-0.0752</td>
<td>-0.627</td>
<td>9</td>
<td>-0.0772</td>
<td>-0.643</td>
</tr>
<tr>
<td>9</td>
<td>51</td>
<td>-0.0752</td>
<td>-0.627</td>
<td>10</td>
<td>-0.0772</td>
<td>-0.643</td>
</tr>
<tr>
<td>10</td>
<td>52</td>
<td>-0.0753</td>
<td>-0.627</td>
<td>11</td>
<td>-0.0772</td>
<td>-0.643</td>
</tr>
</tbody>
</table>
```
4. Foundation Model Statistics

Since spMats is utilizing finite element analysis to model and design the foundation. It is useful to track the number of elements and nodes used in the model to optimize the model results (accuracy) and running time (processing stage). spMats provides model statistics to keep tracking the mesh sizing as a function of the number of nodes and elements.

![Figure 18 – Model Statistics](image)
5. **Column and Pile Design - spColumn**

spMats provides the options to export column and pile information from the foundation model to spColumn. Input (CTI) files are generated by spMats to include the section, materials, and the loads from the foundation model required by spColumn for strength design and investigation of piles and columns. Once the foundation model is completed and successfully executed, the following steps illustrate the design of a sample column.

![Figure 19 – Exporting CTI Files](image-url)

- Exporting CTI Files
After exporting spColumn input files, the pile and column design/investigation can proceed/modified to meet project specifications and criteria. In the following the column design results are shown as an example.
Figure 21 – Pier Interaction Diagram with Factored Load
Figure 22 – Pier 3D Failure Surfaces
6. **2D/3D Viewer**

2D/3D Viewer is an advanced module of the spColumn program. It enables the user to view and analyze 2D interaction diagrams and contours along with 3D failure surfaces in a multi viewport environment.

2D/3D Viewer is accessed from within spColumn. Once a successful run has been performed, you can open 2D/3D Viewer by selecting the **2D/3D Viewer** command from the **View** menu. Alternatively, 2D/3D Viewer can also be accessed by clicking the 2D/3D Viewer button in the program toolbar.

![2D/3D Viewer for Pier](image)

**Figure 23 – 2D/3D View for Pier**
7. Pier Section Optimization

To further optimize pier design, it was agreed with the builder that 16#6 reinforcement cage can be used for this pier. The following figure illustrate the reduced axial strength capacity is adequate to resist the maximum pier loading. More information about the structural vs architectural columns are provided in “Columns with Low Reinforcement - Architectural Columns” technical article.

![Figure 24 – Superimpose Feature](image-url)